Local derivations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local higher derivations on C*-algebras are higher derivations

Let $mathfrak{A}$ be a Banach algebra. We say that a sequence ${D_n}_{n=0}^infty$ of continuous operators form $mathfrak{A}$ into $mathfrak{A}$ is a textit{local higher derivation} if to each $ainmathfrak{A}$ there corresponds a continuous higher derivation ${d_{a,n}}_{n=0}^infty$ such that $D_n(a)=d_{a,n}(a)$ for each non-negative integer $n$. We show that if $mathfrak{A}$ is a $C^*$-algebra t...

متن کامل

Local Generalized (α,β)-Derivations

We study local generalized (α,β)-derivations on algebras generated by their idempotents and give some important applications of our results.

متن کامل

Characterizations of 2-local derivations and local Lie derivations on some algebras

We prove that every 2-local derivation from the algebra Mn(A)(n > 2) into its bimodule Mn(M) is a derivation, where A is a unital Banach algebra and M is a unital A-bimodule such that each Jordan derivation from A into M is an inner derivation, and that every 2-local derivation on a C*-algebra with a faithful traceable representation is a derivation. We also characterize local and 2-local Lie d...

متن کامل

Local Derivations on Algebras of Measurable Operators

The paper is devoted to local derivations on the algebra S(M, τ) of τ measurable operators affiliated with a von Neumann algebra M and a faithful normal semi-finite trace τ. We prove that every local derivation on S(M, τ) which is continuous in the measure topology, is in fact a derivation. In the particular case of type I von Neumann algebras they all are inner derivations. It is proved that f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1990

ISSN: 0021-8693

DOI: 10.1016/0021-8693(90)90095-6